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Abstract 

Our objective is  to produce high-accuracy  maps of 
the  terrain  elevation  at  landing  sites  on  planetary bod- 
ies  through  the  use of all available image  data. W e  
use  images  on  the  planetary  surface  from  landers  and 
rovers,  images captured during  the  lander  descent  to 
the  surface,  and orbital images.  Three  new capabil- 
ities  have been developed. First, we generate eleva- 
tion  maps  from  descent  images  using  structure-from- 
motion  techniques.  These  maps are useful  for  rover 
navigation  and  provide a link between the orbital im- 
ages and  surface  images. W e  have developed a method- 
ology for  performing  rover  localization  using  bundle 
adjustment  that  uses  tie  points between the  rover  and 
descent  images to  determine both the  camera and the 
tie  point  locations.  Finally, a new  method  to  perform 
registration  between orbital images and descent  images 
has been developed that locates the  landing  position in 
the orbital imagery  and allows integration of the  entire 
data  set.  These  technologies are important  for  per- 
forming  rover  navigation in future space missions  and 
the  maps  provide a  tool for coordinating  rovers in a 
robotic colony. 
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1 Introduction 

For the exploration of planetary surfaces, the im- 
ages taken  during the lander's descent provide a crit- 
ical link between orbital imagery and imagery taken 
on the surface using rovers and landers. The descent 
imagery not only provides information about  the land- 
ing location in a global coordinate  system,  but also 
yields  progressively higher resolution maps for map- 
ping and mission planning for  rovers. We address the 

issue of mapping using all available imagery, including 
imagery from the surface, descent imagery, and  orbital 
imagery. 

In order to map the  data from all sources of im- 
agery and combine them  into a multi-resolution map, 
we have  developed several new capabilities. First, 
we have  developed techniques for building three- 
dimensional terrain maps from descent imagery by 
comparing each pair of images in the nested sequence. 
Next, we have created techniques for  localizing  rovers 
on the surface using the descent imagery. This allows 
the incorporation of surface imagery into the multi- 
resolution map  structure. Finally, we developed a new 
method for the registration of descent imagery to or- 
bital imagery using entropy alignment. 

Our approach to mapping descent imagery has two 
steps: motion refinement and  depth recovery. In mo- 
tion refinement, we use an initial motion estimate to 
avoid the intrinsic ambiguity in descending motions. 
The objective of the motion refinement is to adjust  the 
motion parameters such that  the epipolar constraints 
are valid  between adjacent frames. The  depth recov- 
ery  step correlates adjacent frames to match pixels  for 
triangulation. Due to  the descending motion, the con- 
ventional rectification process  is replaced by a set of 
anti-aliasing image warpings corresponding to a set of 
virtual parallel planes. 

In order to locate rover positions in the  map con- 
structed from descent imagery and enable incorpo- 
ration of the rover imagery into  the  map, we have 
developed bundle adjustment techniques for  rover  lo- 
calization. In this method tie  points that represent 
the same locations in the rover and descent imagery 
and determined and optimization techniques are used 
to determine the camera  and tie point positions for 
each image in a batch optimization. These techniques 
have been extended to allow incremental localization, 
so that new imagery can be efficiently added to  the 
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network of tie points. 
We have also developed a new method for  com- 

paring descent imagery to orbital imagery in order to 
locate the landing site  and provide context for the de- 
scent imagery.  Unlike matching using mutual informa- 
tion, which fails in our test cases, our method takes ad- 
vantage of shape information in the imagery by  com- 
paring the alignment of spatial  entropy in the orbital 
image and  the descent image. The basic method is 
to transform each image into a new image represent- 
ing the entropy at each location. The images are  then 
compared (for example, using normalized correlation) 
to determine a position where the entropies are best 
aligned. 

Each of these  methods  has been tested by applying 
it  to a set of data collected during rover  field test- 
ing at Silver Lake, California. During this field test, 
a set of descent imagery was collected using a heli- 
copter. The  data set consists of eight images taken at 
elevations that range from 1086 m to 8 m above the 
ground. These images, together with the thousands 
of rover images collected at the site  and SPOT satel- 
lite imagery, yield a rich set of data for testing rover 
mapping and localization algorithms in the context of 
a planetary landing scenario. 

2 Mapping Descent Images 

We recover depth maps from descent images us- 
ing a two-stage process [ll]. First, motion refinement 
is performed in order to guarantee that  the epipolar 
constraints are satisfied between the images. Then, 
depth recovery  is performed using an algorithm based 
on correlation. 

2.1 Motion  Refinement 

Recovering camera motion from  two or more frames 
is one of the classical problems in computer vision. 
Linear [5] and nonlinear [8] solutions have  been pro- 
posed. For descent motions (as in Fig. l), generic mo- 
tion recovery from matched features is  ill-posed  owing 
to a numerical singularity. Since the camera is  rigidly 
attached to  the lander, and  the change in the lander 
orientation can be measured accurately by an iner- 
tial navigation system onboard, we can eliminate the 
singularity problem by adding a penalty  term for  devi- 
ating from the measured orientation. We recover the 
camera motion by tracking  features in the image and 
optimizing based on epipolar constraints. 

For each pair of adjacent frames in the sequence, 
we track  features that have been selected in the higher 
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Figure 1: Descent Motion 

resolution frame into the lower resolution frame. We 
use Forstner's interest operator [2] to evaluate the 
trackability of the features in the higher resolution 
frame. We select the features with high scores, while 
disallowing features that  are  too close together. Once 
the image resolutions have  been equalized (through 
downsampling, or anti-aliasing warping, if necessary), 
feature tracking is performed in a straightforward 
manner using normalized correlation. 

The tracked features provide a rich set of obser- 
vations to constrain the camera motion, even though 
the relationship between the locations of the tracked 
features and  the  camera motion parameters is  highly 
nonlinear. Let us assume that  the projection matrix 
of the camera is M, the location of feature i at time 
t is [X:, qt, z : ] ~ ,  its image location at time t repre- 
sented in homogeneous coordinates is [zf , yf , and 
the camera motion between time t and  time t + 1 is 
composed of a translation T and  rotation R ( 3 x 3  ma- 
trix). The projection of the feature at time t is, thus: 

and  the projection at time (t + 1) is: 

[ ~ ~ ~ ] = M [ ~ ~ ~ ] = M ( R [ ~ ] + T ) .  ,;+I ,;+I 

(2) 
Therefore, the feature motion in the image is: 

= u [ :] y f  +v, 



where U = MRM-l is a 3x3  matrix  and V = MT 
is a 3-vector. Let [ci ,~:] = [x:/zf,yf/zf] denote the 
actual column and row location of feature i in image 
coordinates at time t. We, then, have the predicted 
feature locations at time t + 1 as: 

ef+l = 2100.: + uo1yf + 210229 + wo 
7 (4) 

21204 + u21yf + 2 1 4  + w2 

+f+l = 2110z: + ully: + 21122: + w1 
1 (5) 

u204 + u21yf + 21224  + 212 
where uij and wi are elements of U and V respectively. 

In  order to refine the motion estimate, we augment 
the parameters with depth  estimates for  each of the 
features. There are two advantages to this approach. 
First,  the objective function becomes strictly the dis- 
tance between the predicted and observed feature lo- 
cations. Therefore, it is guaranteed to have  no bias if 
the observations contain no bias. In addition, in the 
context of mapping descent images, we have a good 
initial estimate of the depth value  from the spacecraft 
altimeter.  Incorporating  this information will, thus, 
improve the optimization in general. 

Let us say that  the  depth value of feature i at 
time t is 4 and  the camera is pointing along the z- 
axis, the homogeneous coordinates of the feature  are 
[x: ,  y:, zf]’ = G[ci, ~ f ,  lit. Therefore, the overall  ob- 
jective function we are minimizing  is: 

where N is the number of features,  and  and 
+f+’ are nonlinear functions of the camera motion 
and  depth value 4 given  by Eq. (4) and (5). We 
perform nonlinear minimization using the Levenberg- 
Marquardt  algorithm. 

2.2 Depth Map  Recovery 

The second step of our method generates depth 
maps using correlations between image pairs. In order 
to compute the image correlation efficiently, we need 
to rectify the images in a manner similar to binocular 
stereo. Unfortunately, it is impossible to rectify the 
images along scanlines because the epipolar lines  in- 
tersect each other near the center of the images. If we 
resample the images along epipolar lines as in stereo, 
we  will oversample near the image center,  and under- 
sample near the image boundaries. 

In order to avoid this problem, we adopt a slic- 
ing algorithm that allows us to perform the corre- 
lation efficiently. The main concept is to use a set 

of virtual planar surfaces slicing through the  terrain. 
The  virtual  planar surfaces are similar, in concept, to 
horopter surfaces [l] in stereo. For every planar sur- 
face IC, if the terrain surface lies on the planar surface, 
there exists a projective warping P k  between two  im- 
ages. If we designate the first image 11 ( x ,  y) and  the 
second image I~(s ,  y),  then for every virtual  planar 
surface, we can compute a correlation image as the 
sum-of-squared-differences (SSD): 

x+w Ir+w 

m=z- W n=y- W 

(7) 
where 2W + 1 is the size of the correlation window and 
$ ( x ,  y) is a warped version of 1 2 ( 5 ,  y): 

I%Y) = I2 ( 
P2oX + P21Y + P22 ’ p2ox + p21y + p22 1, POOZ +Poly + Po2 PlOZ + PllY + P12 

(8) 
and pij are elements of the 3x3 matrix P k .  Due to  the 
drastic resolution difference, an anti-aliasing resam- 
pling such as [3] or a uniform downsampling of 1 2 ( 2 ,  y) 
is applied before the image warping. In  practice, if 
the camera heading directions are close to be perpen- 
dicular to  the ground, a uniform downsampling be- 
fore warping shall suffice. Otherwise, a space-variant 
downsampling is  needed to equalize the image resolu- 
tions. 

The  depth value at each pixel  is the  depth of the 
planar surface z k  whose corresponding SSD image 
pixel Ck(z, y) is the smallest: 

Z(Z,Y> = Z k ,  (9) 

where 

c k ( ~ , Y > ~ C j ( z , Y ) , j = O , . . . , M - l ,  (10) 

and M is the number of planar surfaces. To further re- 
fine the depth values, the underlying SSD curve can be 
interpolated by a  quadratic curve and  the “subpixel” 
depth value can be computed [lo] as: 

where Sz is the depth increment between adjacent pla- 
nar surfaces. 

The projective warping matrix PI, is derived from 
the parameters of the camera motion and  the planar 
surfaces. For an  arbitrary point X in some reference 
frame, its projection is expressed as x = M(X - C ) ,  
where C is the position of the camera nodal point 
and M is the projection matrix. Note that C and 
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M encapsulate the camera motion between the im- 
ages, since they are represented in a common  refer- 
ence frame. Let C1 and M1 represent the higher 
camera, C2 and M2 represent the lower camera, and 
N T X  + z k  = 0 represent the set of planar surfaces. 
For any pixel in image 2 (i.e. the lower camera), its 
location must lie on a 3d ray: 

" 

L - J  

where c2 and 7-2 are  the column and row location of 
the pixel and s is a positive scale factor. If the pixel  is 
from a point on the planar surface, then the following 
constraint must be satisfied: 

Therefore, the scale factor s must be 

We can then re-project the point onto the first image 
using Eq. (12) and (14): 

where Pk is a 3x3  matrix specifying the projective 
warping: 

Pk = Ml(C2  - C1)NTMF1 - (NTC2 + zk)MIMF1. 

Note that  the  depth recovery  is numerically unsta- 
ble in the vicinity of the epipoles (at  the center of the 
image for pure descending motion), since  pixels near 
the epipoles have a small amount of parallax, even 
for large camera motions. Mathematically, the SSD 
curves in  those  areas  are very flat and,  thus,  accurate 
depth recovery  is difficult. These regions can be easily 
filtered, if desired, by imposing a minimum curvature 
threshold at the minima of the SSD curves. 

(16) 

2.3 Experiments 

A set of real descent images was  collected  in the 
desert near Silver Lake, California using a helicopter. 
Figure 2 shows four frames from this sequence. The 
initial  camera motions were estimated using control 
points on the ground. Several of the images  con- 
tain significant lateral motions due to  the difficulty 

in maintaining the x-y position of the helicopter dur- 
ing the  data collection. Column (c) of Fig. 2 shows 
the false-color depth  maps that were  recovered from 
the sequence and column (d) shows the image draped 
over the visualized terrain. 

For the images in this  data  set,  the  terrain slopes 
downward from left to right, which can be observed 
in the rendered maps. Some of the interesting  terrain 
features include the bushes visible in row 1 and  the 
channel in row 2. Note that  the areas in which the 
helicopter shadow  is present yield good results, despite 
the movement of the shadow. This can be attributed 
to  the robust methods that we use  for both motion 
estimation and  template matching [7]. Overall, this 
data set indicates that we can robustly compute maps 
that are useful  for  rover navigation over both small 
and large scales  using real descent images. 

3 Localization With Descent Images 

A second aspect of the multi-resolution mapping 
problem that we have examined is the determina- 
tion of the roverlcamera position in the  terrain using 
matches between surface and descent images [4]. This 
allows the construction of a map encompassing both 
sets of images. 

For landing on Mars (or another  planetary  body), 
we have no ground control points. In  this case, the 
bundle adjustment  computation is a free network con- 
sisting of the exposure centers of the camera positions 
(both descent and surface images), measured image 
tie points, and  the ground location of each of the  tie 
points. We select the landing location as  the origin 
of a local coordinate frame. Three  constraints  are ap- 
plied to  the bundle adjustment model: scale, azimuth, 
and zenith. These are supplied by a landmark location 
relative to  the lander obtained by,  for example, stereo 
vision.  Given the landmark coordinates (Lz,   L, ,   L,) ,  
we constrain the scale S ,  azimuth a, and zenith ,8 as 
follows: 

s2 = Lx2 + L,2 + L,2 (17) 

a = tan-' L, /L ,  (18) 

If we let A be the coefficient matrix  after lineariza- 
tion, L be the observation vector and V be the correc- 
tion vector, then we have the unknown vector X (in- 
cluding the camera positions and ground coordinates) 
as: 

V = A X - L ,  (20) 



Figure 2: Real descent sequence  from  a helicopter. (a) Image  taken at higher altitude. (b) Image  taken at lower altitude. 
(c) False-color estimated terrain map. (d) Rendered  terrain  map with image  overlaid. (The rows  have  different  height 
scales.) 

and  the  three  constraints above can be represented as: 

H X  = W. (21) 

With weight matrix P on the measurements of the 
image points, we let N = A T P A  and our least-squares 
solution becomes: 

x = N - ( A ~ P L +  H ~ ( H N - H * ) - ~ ( w  - HN-A*PL)) ,  
(22) 

where N -  is the generalized inverse of N .  
For rover localization along a traverse, we  would 

prefer an incremental method,  rather than a batch 
method that may require more time than desired. As- 
suming that we have previously processed the first 
m - 1 rover stations, we can decompose the obser- 
vation equations into two parts: 

vm-1 = Am-lXm-1 - lm-1,  (23) 

and 
vm = AmXm + BmYm - 1,. (24) 

Equation 23 represents the solution with all of the 
data until rover station m - 1 and  Equation 24 is an 
incremental update of the position using the  data at 
station m, where Y, is the new  unknown vector ex- 
pressing the rover position at station m. In this case, 
the generalized inverse of N,  becomes: 

The incremental solution for station m is: 
Xm = Wm(Xm-1- F'm(lm - AmXm-1)) + GmBIfIPmZm 

(27) 
and 

Ym = -(B:PmBm)-B:PmAmWm. 
(Xm-1 - Fm(Zm - AmXm-1)) + HmBEPmIm (28) 

where 
w m  = I + N ; A : P ~ B ~ H ~ B : P ~ A : ,  (29) 

Fm = (Am-lPm-lAm-l ) -Am.  T  T 

(P i '  + Am(A:-lPm-lAm-l)-A:)-', (30) 

Nm = ( N ~ - ~  + A:P,A,)-. (31) 

This method was tested using data from the Silver 
Lake test  site. In this experiment, we used 11 descent 
images and 14 pairs of rover stereo images taken at 3 
separate rover stations. Image features  appearing in 
both  the rover and descent images  were selected as tie 
points (see Fig. 3). The results of the experiment were 
compared with ground-truth collected using GPS. In 
each case, we were able to obtain localization accuracy 
within 1 m of the GPS estimate. For  rover positions 
closer to  the center of the descent imagery, the ac- 
curacy is  much better, with errors below 5 cm for a 
position approximately 5 meters from the center. 

4 Registering Descent Images 

In order to determine the location of the landing 
site  and provide context for the descent images, it is 



(b) 
Figure 3: Example tie points  between  rover and descent 
images. (a) Rover  images. (b) Descent  image. 

necessary to determine the location of the descent im- 
ages within lower-resolution orbital images taken of 
the same location. This is a difficult problem for  two 
reasons. First,  the images are captured with differ- 
ent sensors that have different sensitivities to various 
wavelengths of light. Therefore, the same terrain lo- 
cation will  yield different image intensities for the two 
sensors. In general, the relationship between the im- 
age intensities yielded  by the same terrain location in 
the two  images is highly non-linear. The second prob- 
lem is that transformation between the camera posi- 
tions (and,  thus, the position of the image data) is 
complex. There are six degrees-of-freedom in the rel- 
ative  camera positions and  this leads to a six degree- 
of-freedom transformation in the image space, if the 
terrain is approximated  as planar.' 

A common technique that is used  for this  type of 
image registration is the maximization of mutual in- 

'The  transform  is  even  more  complex if the  terrain is not 
approximated as planar.  However,  we  shall  use  the  planar  ap- 
proximation  in  this  paper,  since  the  distance of the  terrain  from 
the  camera  is  large. 

Figure 4: Entropy image example.  (a) Orbital  image of 
the Ayawatz  Mountains and Silurian  Valley  in  California. 
(b) Entropy  image computed from (a). 

formation between the images [6, 91. This technique 
locates the relative position between the images at 
which the mutual  statistical information content is 
maximized. Unfortunately, in experiments on real im- 
ages, we have found that  this method fails when the 
search space is large. We speculate that  the reason 
for this failure is that mutual information does not 
well  use shape information that is present in the im- 
ages. Another possible explanation is that smooth 
shading from the different illumination in the images 
causes the correct match to score poorly, since mutual 
information can not handle this  type of illumination 
change. 

We use a different method, where each image is 
transformed into an entropy image, storing the en- 
tropy at each location in the original image. Registra- 
tion is then performed using the entropy images. This 
method is more robust to changes in illumination and 
makes greater use of shape information in the image. 

For a discrete random variable A ,  with marginal 
probability distribution p ~ ( a ) ,  the entropy is  defined 
as: 

a 

Note that 0 . log0 is taken to be zero, since 

lim x log x = 0. (33) 
x+o 

In order to compute the entropy image for both  the 
template  (the descent image) and  the search image 
(the  orbital image), we apply Eq. 32 to each square 
window of some particular size (15 x 15 pixels  is typi- 
cal) and replace the pixel  value with the entropy score. 
Figure 4 shows an example of an entropy image cre- 
ated from an orbital image at our test  site. 

In order to locate the best position of the descent 
image in the orbital image, we combine the use of the 
fast Fourier transform (FFT)  to perform correlation 



. .  

(a)  (b) 
Figure 5: Registration example. (a) Aerial image showing 
a detail of the image in Fig 4. (b) Registered location of 
the aerial image with respect to  the  orbital image. 

over translations with a search over the remaining four 
parameters of the search space. For  each set of ro- 
tation, scaling, and warping parameters, correlation 
is performed efficiently in the frequency domain and 
the location with the highest normalized correlation 
can be located very quickly. At present, a brute-force 
search is  used to search over the remaining param- 
eters of the search space. We are currently investi- 
gating algorithms for  efficiently searching these pose 
parameters. Fig. 5 shows an example of the registra- 
tion achieved with these techniques. In this exam- 
ple (where experiments with mutual information have 
failed to detect the correct position), the match using 
entropy alignment performs well, finding a very  close 
match between the descent image and the orbital im- 
age. 

5 Summary 

We have discussed new techniques for performing 
multi-resolution mapping of image data from a vari- 
ety of sources. For mapping landing sites on plane- 
tary bodies, we use images taken on the surface by 
landers and rovers, images taken  during a lander’s de- 
scent to  the surface, and images captured from orbit. 
Three techniques were described in  this  paper.  First, 
a method for generating  terrain maps from the descent 
images was described. This gives  us multi-resolution 
information for navigation and planning, and provides 
a link between the surface images and the orbital im- 
ages. Next, we described a method for determining 
the rover position on the planet using correspondences 
between surface imagery and descent imagery. In ad- 
dition to being useful  for navigation, these techniques 
allow the surface imagery to be accumulated into a 
map encompassing all of the  data. Finally, we have 

described techniques for performing registration be- 
tween descent images and  orbital images. This allows 
us to determine the location of the landing site  and 
provides context for the descent images and, by  ex- 
tension, the surface images. The combination of these 
techniques yields an overall framework for registering 
and combining the  terrain maps for all of the  data 
sources. 
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